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the hottest new programming language is English

未来的编程语言只会剩下两种：一种叫英文，一种叫中文
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What is the “Prompt”?
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PLMs and Downstream Task Models
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Traditional machine 
learning

Neural network 
methods enhanced by 
word2vec

The prompt approach 
represented by GPT3 

The fine-tune method 
represented by BERT 

No pre-training language model

The pre-trained language model 
plays the role of initializing the 
input text signal

The pre-trained language model is responsible for 
extracting high-level features from the input text 

Pre-training language models take on more 
responsibilities: feature extraction, result prediction 

Downstream 
Task Models

Pre-trained
LMs

ReasonsStages



Secret in Modern NLP Development
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The history of modern natural language processing is essentially (probably) a 
history of changes in the relationship between downstream tasks and pre-
trained language models (PLMs).

Pre-trained 
Language Models

Downstream
Task Models

Closer

（1）use pre-trained language models
（2）use a better pre-trained language model
（3）better use a pre-trained language  model
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What is the “prompt” in the 
context of NLP research?
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What is the “prompt” in the 
context of NLP research?



直观的定义
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 Prompt is a cue given to the pre-trained language model to allow it better
understand human’s questions



直观的定义
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 Prompt is a cue given to the pre-trained language model to allow it better
understand human’s questions



更技术层面的定义
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 Prompt is the technique of making better use of the knowledge from the pre-
trained model by adding additional texts to the input. purpose

Method



更技术层面的定义
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 Prompt is the technique of making better use of the knowledge from the pre-
trained model by adding additional texts to the input. purpose

Method
还有什么好处？



任务的“大一统”

21

Objective 

modification

Task 

Reformulation
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What is the general workflow of 
prompt-based methods?



Prompting for Sentiment Classification
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 Task Description:

◼ Input: sentence x;

◼ Output: emotional polarity of it 

⚫ (i.e.,☺ v.s )

Input:   x = I love this movie.



Prompting for Sentiment Classification
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 Transform x into prompt x’ through
following two steps:

◼ Defining a template with two slots: [x] and

[z]; Template:  [x] 
Overall, it was a 

[z] movie.

Input:   x = I love this movie.



Prompting for Sentiment Classification
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 Transform x into prompt x’ through
following two steps:

◼ Defining a template with two slots: [x] and

[z]; Template:  [x] 
Overall, it was a 

[z] movie.

Input:   x = I love this movie.

Require 

human effort



Prompting for Sentiment Classification
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 Transform x into prompt x’ through
following two steps:

◼ Defining a template with two slots: [x] and

[z];

◼ Instantiate slot [x] with input text

Template:  [x] 
Overall, it was a 

[z] movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.



Prompting for Sentiment Classification
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 Build a mapping function between
answers and class labels.

◼ ☺ -> fantastic

◼  -> boring

label answer

Template:  [x] 
Overall, it was a 

[z] movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer: 
{fantastic:☺, 

boring:}



Prompting for Sentiment Classification
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 Given a prompt，predict the answer [z].

◼ Choose a suitable pretrained
language model;

Which one?

Template:  [x] 
Overall, it was a 

[z] movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer:
{fantastic:☺, 

boring:}



Prompting for Sentiment Classification
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 Given a prompt，predict the answer [z].

◼ Choose a suitable pretrained
language model;

◼ Fill in [z] as “fantastic” Template:  [x] 
Overall, it was a 

[z] movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer: 
{fantastic:☺, 

boring:}

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.



Prompting for Sentiment Classification
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 Mapping: Given an answer, map it into
a class label.

◼ fantastic => ☺
Template:  [x] 

Overall, it was a 
[z] movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer:
{fantastic:☺, 

boring:}

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.

Mapping: fantastic =>☺



Summary
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Terminology Notation Example

Input x I love this movie

Output (label) y ☺

Template - [x] Overall, it was a [z] movie

Prompt x’ I love this movie. Overall, it was 
a [z] movie

Answer z fantastic, boring



Rethinking Human Efforts in Prompt-based Methods
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Answer: 
{fantastic:☺, 

boring:}

Template:  [x] 
Overall, it was a 

[z] movie.

Input:  x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.

Mapping: fantastic =>☺

Prompting Method



Rethinking Human Efforts in Prompt-based Methods
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Answer: 
{fantastic:☺, 

boring:}

Template:  [x] 
Overall, it was a 

[z] movie.

Input:  x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.

Mapping: fantastic =>☺

Prompting Method

Input:  x = I love this movie.

Predicting:☺

Traditional Method
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What are the design considerations
for prompt-based methods?



Design Considerations for Prompt-based Methods
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 Prompt Template Engineering

 Answer Engineering

 Pre-trained Model Choice

 Expanding the Paradigm

 Prompt-based Training Strategies



Prompt Template Engineering
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 Research Question:

◼ how to define appropriate prompt templates

It was a [z] movie

The movie is [z]

The film is [z]



Design Decision of Prompt Templates
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Prompts are learnable 

parameters
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Prompt Shape
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 Cloze Template

◼ Contain blanks to be filled.

◼ Useful for Masked LMs.

⚫ “The capital of ____ is Beijing .”



Prompt Shape
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 Cloze Template

 Prefix Template

◼ Contain a string prefix to be continued.

◼ Useful for Left-to-right LM and Encoder-Decoder LM.

 “President Joe Biden and three of his European allies face …… TL;DR: ____”



Prompt Shape
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 Manual Prompt

◼ The most natural way to create prompts

o I love this movie so much! What’s the sentiment of the text? ___ .

o President Joe Biden and three of his European allies face ……  In summary, ___ .

o President Joe Biden and three of his European allies face …… The article is about ___ .



Manual Template Design
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 Manual Prompt

◼ The most natural way to create prompts

◼ An art that takes time and experience.

▪ First template–answer pair

▪ Second template–answer pair

Template: <A movie review> The movie is ___ . 

Answer: fantastic/terrible

Template: <A movie review> The review is ___ . 

Answer: positive/negative

Zero-shot Accuracy 
(BERT-base, SST-2)

0.749

0.534



Manual Template Design
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 Manual Prompt

◼ The most natural way to create prompts

◼ An art that takes time and experience.

◼ For some complicated tasks, its hard to manually craft templates.
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 Gradient-based Search
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Discrete Search
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 Mining

◼ Use a large corpus to mine templates that

contain both the input and the gold answer.

◼ Example

 Fact retrieval for country-capital

relationship

 search through Wikipedia and find

strings that contain both ``Beijing” and

``China” or other pairs.

Input Gold answer

China Beijing

Japan Tokyo

United States Washington

o Beijing, the capital of China
o The capital of China is Beijing
o ……

Reference: Jiang et al. How Can We Know What Language Models Know? TACL(2020)



Discrete Search
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 Paraphrasing

◼ Take in an existing seed template, and paraphrases it into a set of other candidate templates.

References: [1] Jiang et al. How Can We Know What Language Models Know? TACL (2020). [2] Yuan et al. BARTScore: Evaluating Generated Text as 
Text Generation. NeurIPS (2021). [3] Haviv et al. BERTese: Learning to Speak to BERT. EACL (2021).



Discrete Search
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 Paraphrasing

◼ Take in an existing seed template, and paraphrases it into a set of other candidate templates.

◼ Typical methods

 Back-translation

 Using replacement of phrases from a thesaurus

 Use neural rewriter to rewrite

References: [1] Jiang et al. How Can We Know What Language Models Know? TACL (2020). [2] Yuan et al. BARTScore: Evaluating Generated Text as 
Text Generation. NeurIPS (2021). [3] Haviv et al. BERTese: Learning to Speak to BERT. EACL (2021).



Discrete Search

50

 Gradient-based Search

◼ Stepping through tokens and find ones that can trigger desired outputs.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

___ .I love this movie!

The template token we want to search

We want the LM to predict positive here



Discrete Search
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 Gradient-based Search

◼ Stepping through tokens and find ones that can trigger desired outputs.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

___ .I love this movie! We want the LM to predict positive here

Token P(positive)

is 0.8

hello 0.09

cat 0.04

…. …



Discrete Search
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 Gradient-based Search

◼ Stepping through tokens and find ones that can trigger desired outputs.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

___ .I love this movie! We want the LM to predict positive here

Token P(positive)

is 0.8

hello 0.09

cat 0.04

…. …



Discrete Search
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 Generation

◼ Use LM to generate templates.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

Input:   Thank you <X> me to the party <Y> week. 

Target: <X> for inviting <Y> last <Z> 
Pre-train



Discrete Search
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 Generation

◼ Use LM to generate templates.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

I love this movie! <X> great <Y>

<X> This is <Y> . <Z>

<X> A <Y> one. <Z>

……

T5 decode



Discrete Search
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 LM Scoring

◼ Use the LM to choose the templates that achieve high LM probability.

I love this movie! <template> positive. 

Sequence P

I love this movie! The sentiment of the text is positive. 0.4

I love this movie! Hello world positive 0.09

I love this movie! The text is positive 0.3

…. …

Reference: Davison et al. Commonsense Knowledge Mining from Pretrained Models. EMNLP (2019). 
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Continuous Template Search
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 Prefix Tuning

◼ Prepends a sequence of continuous task-

specific vectors to the input, while keeping the

LM parameters frozen.

References: [1] Li et al. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 (2021). [2] Lester et al. The Power of Scale 
for Parameter-Efficient Prompt Tuning. arXiv:2104.08691 (2021)



Continuous Template Search
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 Prefix Tuning

◼ Prepends a sequence of continuous task-

specific vectors to the input, while keeping the

LM parameters frozen.

⚫ Shallow Prefix Tuning

References: [1] Li et al. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 (2021). [2] Lester et al. The Power of Scale 
for Parameter-Efficient Prompt Tuning. arXiv:2104.08691 (2021)

Transformer Layers

This     is   input  text.<Prefix>
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 Prefix Tuning

◼ Prepends a sequence of continuous task-

specific vectors to the input, while keeping the

LM parameters frozen.

⚫ Shallow Prefix Tuning

⚫ Deep Prefix Tuning

References: [1] Li et al. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 (2021). [2] Lester et al. The Power of Scale 
for Parameter-Efficient Prompt Tuning. arXiv:2104.08691 (2021)

Transformer Layers

This     is   input  text.<Prefix>



Continuous Template Search
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 Hybrid Tuning

◼ An extension of prefix tuning

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 



Continuous Template Search
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 Hybrid Tuning

◼ An extension of prefix tuning

◼ The positions of tunable virtual tokens can be

anywhere.

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 

I love this movie so much! positive.



Continuous Template Search
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 Hybrid Tuning

◼ An extension of prefix tuning

◼ The positions of tunable virtual tokens can be

anywhere.

◼ Use hard templates initialization

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 

I love this movie so much! positive.The issentiment



Continuous Template Search
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 Hybrid Tuning

◼ An extension of prefix tuning

◼ The positions of tunable virtual tokens can be

anywhere.

◼ Use hard templates initialization

◼ Combine hard and soft template tokens

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 

I love this movie so much! is positive.
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 Prompt Template Engineering

 Answer Engineering

 Pre-trained Model Choice

 Expanding the Paradigm

 Prompt-based Training Strategies



Answer Engineering
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 Research Question:

◼ Given a task (or a prompt), how to define a suitable mapping function between label space and

answer space?

{fantastic:☺, boring:}

{interesting:☺, terrible:}

{good:☺, bad:}



Answer Engineering
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 Research Question:

◼ Given a task (or a prompt), how to define a suitable mapping function between label space and

answer space?

Positive

Negative

Label Space (Y)

Interesting
Fantastic

Happy

Boring
1-star

…

Answer Space (Z)
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 Token

◼ Useful for most classification tasks

◼ Examples

 <A movie review> The movie is fantastic/terrible.

 <Premise> Yes/No. <Hypothesis>
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 Token

 Span

◼ Useful for classification with long label names, QA, knowledge probing, etc.

◼ Example
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 Token

 Span

 Sentence(s)

◼ Useful for generation tasks, like MT or summarization.

◼ Example

o Translation from English to Chinese
Input: Hello, world!
Target (gold answer): 你好，世界！



Design Decision of Prompt Answer Engineering
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 Bounded

◼ The space of possible outputs is constrained/finite.

◼ Example

⚫ Text classification: health; finance; politics, sports.
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 Bounded

◼ The space of possible outputs is constrained/finite.

◼ Example

 Text classification: health; finance; politics, sports.

 Unbounded

◼ The space of possible outputs is unconstrained/infinite.

◼ Example

 Text summarization: all valid sequence of tokens.
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◼ For generation tasks, we can use identity mapping to map target output directly to gold

answer

 In MT/Summarization, take the target directly as gold answer
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 The most natural way to create answers

◼ For generation tasks, we can use identity mapping to map target output directly to gold

answer

 In MT/Summarization, take the target directly as gold answer

◼ For classification tasks, the label name can also act as gold answer.

 For example, sports, politics
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 The most natural way to create answers

◼ For generation tasks, we can use identity mapping to map target output directly to gold

answer

 In MT/Summarization, take the target directly as gold answer

◼ For classification tasks, the label name can also act as gold answer.

 For example, sports, politics

 An art that takes time and experience.

◼ For some complicated tasks, it’s hard to manually craft answers.

 For example, relation classification
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 Paraphrasing

 Prune then Search

 Label Decomposition

 Mining
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 Paraphrasing

◼ Start with an initial answer space, and then use paraphrasing to expand this
answer space to broaden its coverage.

◼ Example

o Multiple Choice QA
A person wants to submerge himself in water, what should he use?
(A) Whirl pool (Paraphrase to get Bathtub, A bathtub etc.)
(B) … 

Reference: Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. 2020. How Can We Know When Language Models Know? CoRR
abs/2012.00955 (2020). 
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 Prune then Search

◼ Pruning methods:

 Select the most frequent words

 Select tokens that have highest generation probability at answer position

References:
[1] Taylor Shin, Yasaman Razeghi, Robert L. LoganIV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models 
with Automatically Generated Prompts. In Empirical Methods in Natural Language Processing (EMNLP).
[2] Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making Pre-trained Language Models Better Few-shot Learners. In Association for 
Computational Linguistics (ACL). 
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 Prune then Search

◼ Pruning methods:

 Select the most frequent words

 Select tokens that have highest generation probability at answer position

◼ Searching methods:

 Choose answers that maximize the likelihood of training data

 Choose answers that achieve the best zero-shot accuracy

References:
[1] Taylor Shin, Yasaman Razeghi, Robert L. LoganIV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models 
with Automatically Generated Prompts. In Empirical Methods in Natural Language Processing (EMNLP).
[2] Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making Pre-trained Language Models Better Few-shot Learners. In Association for 
Computational Linguistics (ACL). 
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 Label Decomposition

◼ For complex label, decompose the label into its constituent words.

◼ Example

Reference: Xiang Chen, Xin Xie, Ningyu Zhang, Jiahuan Yan, Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si, and Huajun Chen. 2021. AdaPrompt: 
Adaptive Prompt-based Finetuning for Relation Extraction. CoRR abs/2104.07650 (2021) .



Discrete Answer Search
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 Mining

◼ Given a seed answer, use some knowledge base to retrieve related words.

◼ Example: “city”

Reference: Ning Ding, Yulin Chen, Xu Han, Guangwei Xu, Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu, Juanzi Li and Hong-Gee Kim. 2021. Prompt-
Learning for Fine-Grained Entity Typing. CoRR abs/2108.10604 (2021) .
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 Prompt Template Engineering

 Answer Engineering

 Pre-trained Model Choice

 Expanding the Paradigm

 Prompt-based Training Strategies



Pre-trained Model Choice

87

 Research Question:

◼ Given a task (or a prompt), which pre-trained language model would be the most

appropriate one?

The story 
describes …., 
in summary [z]
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PLMs

Objective Func

Data Corrpution

Directionality

Standard Language Model

Corrupted Text Reconstruction

Full Text Reconstruction

Mask, Deletion, Replacement 

Left-to-right

Bidirectional

GPT3

BERT

BART

BERT

GPT

T5

https://aclanthology.org/D19-1250.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://aclanthology.org/D19-1250.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://aclanthology.org/D19-1250.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://aclanthology.org/D19-1250.pdf
https://jmlr.org/papers/v21/20-074.html
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PLMs

Left-to-Right LM

Masked LM

Encoder-decoder

GPT, GPT3

BERT, RoBERT

BART, T5

https://aclanthology.org/D19-1250.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://aclanthology.org/D19-1250.pdf
https://aclanthology.org/2020.acl-main.703/
https://jmlr.org/papers/v21/20-074.html
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 Characteristics

◼ First proposed by Markov (1913)

◼ Count-based-> Neural network-based

◼ Specifically suitable to highly larger-scale LMs

 Example

◼ GPT-1,GPT-2,GPT-3

 Roles in Prompting Methods

◼ The earliest architecture chosen for prompting

◼ Usually equipped with prefix prompt and the parameters

of PLMs are fixed
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 Characteristics

◼ An extension of left-to-right architecture

◼ Unidirection -> bidirection prediction

◼ Suitable for NLU tasks

 Example

◼ BERT, ERNIE

 Roles in Prompting Methods

◼ Usually combined with cloze prompt

◼ Suitable for NLU tasks



Masked Language Model
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 Characteristics

◼ A denoised auto-encoder

◼ Use two Transformers and two different mask

mechanisms to handle text X and Y separately

 Examples

◼ BART, T5

 Roles in Prompting methods

◼ Text generation tasks or some tasks that can be

formulated into a text generation problem



Which one is more popular?
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 Prompt Template Engineering

 Answer Engineering

 Pre-trained Model Choice

 Expanding the Paradigm

 Prompt-based Training Strategies



Expanding the Paradigm
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 Research Questions

◼ How to extend the current prompting framework to support more NLP tasks?



Design Decision of Multiple Prompt Learning
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Multi-Prompt

Prompt Ensemble

In-context Learning

Chain-of-thought

[11], [57]

[47], [48]

[52]

https://aclanthology.org/D19-1250.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://arxiv.org/pdf/2106.11520.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2104.08773.pdf
https://arxiv.org/pdf/2104.08786.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2105.11259.pdf
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 Definition

◼ using multiple unanswered prompts for an input at

inference time to make predictions

 Advantages

◼ Utilize complementary advantages

◼ Alleviate the cost of prompt engineering

◼ Stabilize performance on downstream tasks



In-context Learning

98

 Definition

◼ Help the model answer the prompt with additional

answered prompts

 Advantage

◼ make use of the small amount of information that has

been annotated

 Core step

◼ Selection of answered prompts

◼ Ordering of answered prompts



Chain-of-thought
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Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei et al.2022



Prompt Sharing
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 Prompt Template Engineering

 Answer Engineering

 Pre-trained Model Choice

 Expanding the Paradigm

 Prompt-based Training Strategies



Prompt Sharing
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 Data Perspective

◼ Zero-shot: without any explicit training of the LM for the down-stream task

◼ Few-shot: few training (e.g., 100) samples of downstream tasks

◼ Full-data: lots of training samples (e.g., 10K) of downstream tasks



Parameter Perspective
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no

PromptsPre-trained LMs

frozentuned without frozen Tuned

No prompts

No parameters 

(discrete 

prompts)



Cases of Parameter Updating
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no

PromptsPre-trained LMs

frozentuned without frozen Tuned

Promptless Fine-tuning
Example: BERT for text classification
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Fixed-prompt Tuning

Example: BERT + Discrete Prompt for text classification
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Fixed-prompt Tuning

Example: BERT + Transferred Continuous Prompt for text 

classification



Cases of Parameter Updating

106

no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Prompt+LM Fine-tuning
Example: BERT + Continuous Prompt for text classification



Cases of Parameter Updating
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no

PromptsPre-trained LMs

frozentuned without frozen Tuned

Adapter Tuning
Example: BERT + Adapter for text classification
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Tuning-free Prompting
Example: GPT3 + Discrete Prompts for Machine Translation
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Tuning-free Prompting
Example: GPT3 + Continuous Prompts for Machine Translation



Cases of Parameter Updating
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Fixed-LM Prompt Tuning
Example: BART + Continuous Prompts for Machine Translation



Too many, difficult to select?
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Promptless Fine-tuning

Fixed-prompt Tuning

Prompt+LM Fine-tuning

Adapter Tuning

Tuning-free Prompting

Fixed-LM Prompt Tuning

If you have a highly large left-to-
right pre-trained language model 
(e.g., GPT3)

If you have few training samples?

If you have lots of training samples?
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GPT-2



Development of Prompting Methods
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