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Datasets for language models have rapidly expanded, culminating in the Common Craw] dataset” [RSR ™ 19] constituting . N N, LSRN
nearly a trillion words. This size of dataset is sufficient to train our largest models without ever updating on the same ?ﬁ Qﬂ}ﬁ k /J \ J'd' \):\E 73' \%
sequence twice. However, we have found that unfiltered or lightly filtered versions of Common Crawl tend to have o= S S /408 %
lower quality than more curated datasets. Therefore, we took 3 steps to improve the average quality of our datasets

(1) we downloaded and filtered a version of CommonCrawl based on similarity to a range of high-quality reference

corpora, (2) we performed fuzzy deduplication at the document level, within and across datasets, to prevent redundancy

and preserve the integrity of our held-out validation set as an accurate measure of overfitting, and (3) we also added

known high-quality reference corpora to the training mix to augment CommonCrawl and increase its diversity.

Details of the first two points (processing of Common Crawl) are described in Appendix A. For the third, we added
several curated high-quality datasets, including an expanded version of the WebText dataset [RWC " 19], collected
by scraping links over a longer period of time, and first described in [KMH ™ 20], two internet-based books corpora
(Books1 and Books2) and English-language Wikipedia.

Table 2.2 shows the final mixture of datasets that we used in training. The CommonCrawl data was downloaded from
41 shards of monthly CommonCrawl covering 2016 to 2019, constituting 45TB of compressed plaintext before filtering
and 570GB after filtering, roughly equivalent to 400 billion byte-pair-encoded tokens. Note that during training, datasets
are not sampled in proportion to their size, but rather datasets we view as higher-quality are sampled more frequently.
such that CommonCrawl and Books2 datasets are sampled less than once during training, but the other datasets are
sampled 2-3 times. This essentially accepts a small amount of overfitting in exchange for higher quality training data.

@ openAI GPT3
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2.2 Training Dataset

Datasets for language models have rapidly expanded, culminating in the Common Craw] dataset” [RSR ™ 19] constituting
nearly a trillion words. This size of dataset is sufficient to train our largest models without ever updating on the same
sequence twice. However, we have found that unfiltered or lightly filtered versions of Common Crawl tend to have
lower quality than more curated datasets. Therefore, we took 3 steps to improve the average quality of our datasets
(1) we downloaded and filtered a version of CommonCrawl based on similarity to a range of high-quality reference
corpora, (2) we performed fuzzy deduplication at the document level, within and across datasets, to prevent redundancy
and preserve the integrity of our held-out validation set as an accurate measure of overfitting, and (3) we also added
known high-quality reference corpora to the training mix to augment CommonCrawl and increase its diversity.

Details of the first two points (processing of Common Crawl) are described in Appendix A. For the third, we added
several curated high-quality datasets, including an expanded version of the WebText dataset [RWC " 19], collected
by scraping links over a longer period of time, and first described in [KMH ™ 20], two internet-based books corpora
(Books1 and Books2) and English-language Wikipedia.

Table 2.2 shows the final mixture of datasets that we used in training. The CommonCrawl data was downloaded from
41 shards of monthly CommonCrawl covering 2016 to 2019, constituting 45TB of compressed plaintext before filtering
and 570GB after filtering, roughly equivalent to 400 billion byte-pair-encoded tokens. Note that during training, datasets
are not sampled in proportion to their size, but rather datasets we view as higher-quality are sampled more frequently.
such that CommonCraw] and Books2 datasets are sampled less than once during training, but the other datasets are
sampled 2-3 times. This essentially accepts a small amount of overfitting in exchange for higher quality training data.

@ openAI GPT3

This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4is'a
Transtormer-style model [39] pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party providers. The model was
then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [40]. Given both

s s o= :
contains no further details about the architecture (including model size), hardware, training compute,
dataset construction, training method, or similar.

We are committed to independent auditing of our technologies, and shared some initial steps and
ideas in this area in the system card accompanying this release.”> We plan to make further technical
details available to additional third parties who can advise us on how to weigh the competitive and
safety considerations above against the scientific value of further transparency.

@ openAI GPT4
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2.2 Training Dataset

Datasets for language models have rapidly expanded, culminating in the Common Craw] dataset” [RSR ™ 19] constituting This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4is'a
nearly a trillion words. This size of dataset is sufficient to train our largest models without ever updating on the same Transformer—stylc model [39) pre-trained to predict the next token in a document, US]IIg both publicly
sequence twice. However, we have found that unfiltered or lightly filtered versions of Common Crawl tend to have available data (such as internet data) and data licensed from third- oviderenThemodelrwas
lower quality than more curated datasets. Therefore, we took 3 steps to improve the average quality of our datasets 5 5 = 5 > party pr . =

(1) we downloaded and filtered a version of CommonCrawl based on similarity to a range of high-quality reference then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [40]. Given both
corpora, (2) we performed fuzzy deduplication at the document level, within and across datasets, to prevent redundancy T i STy e T ==

and preserve the integrity of our held-out validation set as an accurate measure of overfitting, and (3) we also added contains no further details about the architecture (including model size), hardware, tmining compute,

known high-quality reference corpora to the training mix to augment CommonCrawl and increase its diversity. dataset construction, training method, or similar.

Details of the first two points (processing of Common Crawl) are described in Appendix A. For the third, we added

several curated high-quality datasets, including an expanded version of the WebText dataset [RWC ' 19], collected We are committed to independent auditing of our technologies, and shared some initial steps and
by scraping links over a longer period of time, and first described in [KMH* 20], two internet-based books corpora ideas in this area in the system card accompanying this release.”> We plan to make further technical
(Books1 and Books2) and English-language Wikipedia. details available to additional third parties who can advise us on how to weigh the competitive and
Table 2.2 shows the final mixture of datasets that we used in training. The CommonCrawl data was downloaded from safety considerations above against the scientific value of further transparency.

41 shards of monthly CommonCrawl covering 2016 to 2019, constituting 45TB of compressed plaintext before filtering
and 570GB after filtering, roughly equivalent to 400 billion byte-pair-encoded tokens. Note that during training, datasets

are not sampled in proportion to their size, but rather datasets we view as higher-quality are sampled more frequently. G PT4
such that CommonCraw] and Books2 datasets are sampled less than once during training, but the other datasets are O pen AI
sampled 2-3 times. This essentially accepts a small amount of overfitting in exchange for higher quality training data.

@ openAI GPT3

1§ Lrama 2, an updated version ot LLAMA 1, trained on a new mix ot publicly available data. We also
increased the size of the pretraining corpus by 40%, doubled the context length of the model, and &5 . /N K
adopted grouped-query attention (Ainslie et al., 2023). We are releasing variants of LLama 2 with %*EE% . E '%ﬁ- T J: [ H&Z’Kéﬁ?}% E— g l
7B, 13B, and 70B parameters. We have also trained 34B variants, which we report on in this paper 3K
but are not releasing. ]\ T %ﬁ- El\] éﬁ?}%

2. Lrama 2-CHAT, a fine-tuned version of LLama 2 that is optimized for dialogue use cases. We release
variants of this model with 7B, 13B, and 70B parameters as well.

OO Meta LLaMa 2
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2.2 Training Dataset

Datasets for language models have rapidly expanded, culminating in the Common Craw] dataset” [RSR ™ 19] constituting This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4is'a
nearly a trillion words. This size of dataset is sufficient to train our largest models without ever updating on the same ’I\'ansformer-style model [39] pre-trained to predict the next token in a document, US]IIg both publicly
sequence twice. However, we have found that unfiltered or lightly filtered versions of Common Crawl tend to have . . s . -

; ; : available data (such as internet data) and data licensed from third-party providers. The model was

lower quality than more curated datasets. Therefore, we took 3 steps to improve the average quality of our datasets
(1) we downloaded and filtered a version of CommonCrawl based on similarity to a range of high-quality reference
corpora, (2) we performed fuzzy deduplication at the document level, within and across datasets, to prevent redundancy

(=]
and preserve the integrity of our held-out validation set as an accurate measure of overfitting, and (3) we also added contains no further details about the architecture (including model size), hardware, training compute,
dataset construction, training method, or similar.

known high-quality reference corpora to the training mix to augment CommonCrawl and increase its diversity.

Details of the first two points (processing of Common Crawl) are described in Appendix A. For the third, we added

several curated high-quality datasets, including an expanded version of the WebText dataset [RWC ' 19], collected We are committed to independent auditing of our technologies, and shared some initial steps and
by scraping links over a longer period of time, and first described in [KMH* 20], two internet-based books corpora ideas in this area in the system card accompanying this release.”> We plan to make further technical
(Books1 and Books2) and English-language Wikipedia. details available to additional third parties who can advise us on how to weigh the competitive and
Table 2.2 shows the final mixture of datasets that we used in training. The CommonCrawl data was downloaded from safety considerations above against the scientific value of further transparency.

41 shards of monthly CommonCrawl covering 2016 to 2019, constituting 45TB of compressed plaintext before filtering
and 570GB after filtering, roughly equivalent to 400 billion byte-pair-encoded tokens. Note that during training, datasets
are not sampled in proportion to their size, but rather datasets we view as higher-quality are sampled more frequently.
such that CommonCraw] and Books2 datasets are sampled less than once during training, but the other datasets are
sampled 2-3 times. This essentially accepts a small amount of overfitting in exchange for higher quality training data.

@ 0openAl GPT’2
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1§ Lrama 2, an updated version ot LLAMA 1, trained on a new mix ot publicly available data. We also
increased the size of the pretraining corpus by 40%, doubled the context length of the model, and
adopted grouped-query attention (Ainslie et al., 2023). We are releasing variants of LLama 2 with
7B, 13B, and 70B parameters. We have also trained 34B variants, which we report on in this paper
but are not releasing.

2. Lrama 2-CHAT, a fine-tuned version of LLama 2 that is optimized for dialogue use cases. We release
variants of this model with 7B, 13B, and 70B parameters as well.

OO Meta LLaMa 2

then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) (40]. Given both

@ openAI GPT4

Pretraining

Training Data

Gemma 2B and 7B are trained on 2T and 6T
tokens respectively of primarily-English data from
web documents, mathematics, and code. Unlike
Gemini, these models are not multimodal, nor are
they trained for state-of-the-art performance on

multilingual tasks.

We use a subset of the SentencePiece tokenizer
(Kudo and Richardson, 2018) of Gemini for com-
patibility. It splits digits, does not remove extra
whitespace, and relies on byte-level encodings for
unknown tokens, following the techniques used
for both (Chowdhery et al., 2022) and (Gemini
Team, 2023). The vocabulary size is 256k tokens.

Google Gemma
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Is this true? I heard George Hotz say this on the Lex podcast. Was he being serious?
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51 GPT-4 has 220billion parameters?
AL

Is this true? I heard George Hotz say this on the Lex podcast. Was he being serious?

openai
client = OpenAI{)

OpenAT

completion = client.chat.completions.createl(
model=
messages=[

T E

L z

ices[0].message)

t{completion.

GPT-3.5 Turbo

GPT-3.5 Turbo models can understand and generate natural language or code and have been optimized for

chat using the Cha

MODEL

gpt-3.5-turbo-0125

gpt-3.5-turbo

gpt-3.5-turbo-11086

gpt-3.5-turbo-instruct

gpt-3.5-turbo-16k

gpt-3.5-turbo-0613

gpt-3.5-turbo-16k-0613

DESCRIPTION

Hew Updated GPT 3.5 Turbo
The latest GPT-3.5 Turbo model with
higher accuracy at responding in
requested formats and a fix for a bug
which caused a text encoding issue
for non-English language function
calls. Returns a maximum of 4096
output tokens. Learr

Currently points to gpt-3. 5-turbo-
0125.

GPT-3.5 Turbo model with improved
instruction following, JSOMN mode,
reproducible outputs, parallel
function calling, and more. Returns a
maximum of 4,096 output tokens.

Learn more.

Similar capabilities as GPT-3 era
models. Compatible with legacy
Completions endpoint and not Chat
Completions.

Legacy Currently points to gpt-3. 5-
turbo-16k-0613.

Legacy Snapshot of gpt-3. 5-turbo
from June 13th 2023. Will be
deprecated on June 13, 2024.

Legacy Snapshot of gpt-3. 5-16k-
turbo from June 13th 2023, Will be

ns APl but work well for non-chat tasks as well.

CONTEXT
WINDOW

16,385 tokens

16,385 tokens

16,385 tokens

4,096 tokens

16,385 tokens

4,096 tokens

16,385 tokens

TRAINING DATA

Up to Sep 2021

Up to Sep 2021

Up to Sep 2021

Up to Sep 2021

Up to Sep 2021

Up to Sep 2021

Up to Sep 2021




gfer R I R EHEHR 7

B AIE AR R, B
RO EEALE— AL

(

J

~ENXF

Tia) &

26



“ZIRE" IXFNBIFARHATR

OMeta (& ©openAl  stability.ai Google  anthrore  ®cohere  AlR1labs  Inflection amazon

Llama 2 BLOOMZ GPT-4 Stable Diffusion2 PalLM 2 Claude 2 Command Jurassic-2 Inflection-1 Titan Text  Average
Data 40% 60% 20% 40% 0% 0 20%
Labor 9% 29% 17%
Compute 17%
. Methods 0% | ' 48%
g Model Basics 63%
g Model Access 57%
% Capabilities 62%
.E Risks 24%
E Mitigations 26%
-E- Distribution 59%
= Usage Policy 44%
Feedback 30%
Impact 1%

Average 57% 52% 47% a47% MN% 39% 31% 20% 20% 13%

1IN EEEMERARARELBNETEZHELE FHRF9

The Foundation Model Transparency Index Rishi et al.2023
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Text X: the 15th Miss Universe Thailand pageant was held at Royal Paragon Hall

Token Prob Min-KoA) P.’Obﬂ

the the

@ _)Mi:; = EH;?: | = % Z lng(xl-l )

15
L e
GPT-3 x;€{the,Royal Miss,15}

Hall Universe
0 0.075 015 0225 0.3 0 0.0750.150.225 0.3

(a) get token prob (b)select min K% tokens (c) average log-likelihood

.......................................

Detecting Pretraining Data from Large Language Models, Shi et al.2024
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Geoffrey E Hinton Stephen Ibaraki

The Nobel Prize in Physics 2024, Chairman REDDS Capita,
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| have other things said about open source
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Llama 2: Open Foundation and Fine-Tuned Chat Models, Touvron et al.2023
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LLM360: Towards Fully Transparent Open-Source LLMs Liu et al.2023
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oLMo: Accelerating the Science of Language Models, Groeneveld et al.2024
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oLMo: Accelerating the Science of Language Models, Groeneveld et al.2024
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LLaMA1
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CommonCrawl
C4, Github Wikipedia
Books
Arxiv
StackExchange

A new mix of publicly
available online data
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O )l 42249 &40

B Standard transformer architecture

e

—

i 3\
~>{ Add & Norm |

Feed
Forward

Nx | —{((Add & Norm )

-
1
I
I

Multi- Head
Attention

_.Q__j_..

J

Positional
Encoding

D

Input
Embedding

T

Inputs

T

X1 X2x3 x4 x'5

XDDDD%

Xllx1x2x3x4x5

Single Head

Attention(Q, K, V) = softmax (Q T) Vi

Qi=QWP, Ki=KWE, Vi=VW}Y forie{l,...,h}
Attention;(Q;, K, V;) = softmax ( " ) Vi
MultiHead(Q, K, V) = Concat(head;, heads, ..., head,)W?¢

Attention Is All You Need, Ashlsh et al 2017 55
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O Il 2k 2843 &40
B Standard transformer architecture
B Grouped-query attention

X1 X2x3 x4 x'5

XDDDD%

Xllx1x2x3x4x5

Grouped-query Attention

1 Q = [Qla Q2 """ QG]

I T
| Attention(Q;, K, V) = softmax (%

N

) v
LI GQA(Q,K,V) =

1 1 [Attention(Q1, K, V), Attention(Q2, K, V), ..., Attention(Qg, K, V)]

uuuuuuuu NN ==
0000000 00000000 DOOODOAD gggg;gg !
Embe;Sding

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al 2023)
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O JI[Z: 5849 &40 X 00000
B Standard transformer architecture Dﬁ]
B Grouped-query attention X | X1 X2 x3 x4 x5
B KV-cache ~czen)| (I
Feed 1
Forward !
— kY, = [K$.), KO
Nx | (A5d & Norm ) A [V(H) V(t)]
" T Mult-Head 11 1 —— = (2l \T
:_ _Att_erltii, J jAttention(Q(t), K(E:‘)Che, V::E:():he) = softmax (Q (\%’;‘:h") ) V;gc)he
i — J :_
Positonal .\ A T T m oo
Encoding P
Input
Embedding
Inputs

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving
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O Il 2k 2843 &40
B Standard transformer architecture
B Grouped-query attention

S KV-cache feeriem)
B Pre-normalization Feed : |
. orwar I ,
using RMSNorm — o+ X |
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Positional : :
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Input : [
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O KXARETHF

Llama3 Llama2 Llama1

128K 4K 2K

B KT FAEIN E TXKE

B RoPE base frequencyij]l] £1500,000: FH X[

B < ORISR Ex{F FHattention mask

Method m b t Additional Training
RoPE m 10,000 1

PI m/s 10, I)UO 1 continual pre-train
NTK-Aware m 10,0007 1

NTK-By-Parts (1%’(3) +(j))m 10,000 1 continual pre-train
YaRN (1_;J +v(j))m __10.000  0.lln(s)+1  continual pre-train
ABF m 500,000 1 continual pre-train

Extending LLMs’ Context Window with 100 Samples,
Zhang et al.2023 59
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Full Ex

O Il 2k B [8]
GPU Hours
7B/ 8B
70B

405B

Llama3(H100)
1.46M
7.0M

30.84M

Llama2(A100)
0.18M
1.72M

/
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[0 Bechmark

Reading Comprehension

SQuAD V2 (Rajpurkar et al., 2018), QuaC (Choi et al., 2018),
RACE (Lai et al., 2017),

Code

HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),

Commonsense
reasoning/understanding

CommonSenseQA (Talmor et al., 2019), PiQA (Bisk et al., 2020),
SiQA (Sap et al., 2019), OpenBookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2021)

Math, reasoning, and problem solving

GSMS8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b),
ARC Challenge (Clark et al., 2018), DROP (Dua et al., 2019),
WorldSense (Benchekroun et al., 2023)

Adv SQuAD (Jia and Liang, 2017),

Adversarial Dynabench SQuAD (Kiela et al., 2021), GSM-Plus (Li et al., 2024c)
PAWS (Zhang et al., 2019)

Long context QuALITY (Pang et al., 2022), many-shot GSM8K (An et al., 2023a)
MMLU (Hendrycks et al., 2021a),
MMLU-Pro (Wang et al., 2024b),

Aggregate

AGIEval (Zhong et al., 2023),
BIG-Bench Hard (Suzgun et al., 2023)
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O Commonsense Reasoning - HellaSwag

context A woman is outside with a bucket and a dog. The dog is running
around trying to avoid a bath. She...

endings | A rinses the bucket off with soap and blow dry the dog’s head.
B. uses a hose to keep it from getting soapy.
C. gets the dog wet, then it runs away again.
D. gets into a bath tub with the dog.

label C
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0 Math Problems - GSM8K

question

answer

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers' market daily for $2 per fresh duck egg.
How much in dollars does she make every day at the farmers' market?

To find out how much Janet makes at the farmers' market, we need to
first determine how many eggs are left after she eats some for breakfast
and bakes some for her friends. Janet eats 3 eggs for breakfast and
bakes 4 for her friends, so she uses a total of 3 + 4 = 7 eggs. Since her
ducks lay 16 eggs per day, the number of eggs leftis 16 - 7 = 9. She
sells these 9 eggs for $2 each, so her daily earnings are 9 x $2 = $18.
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Category Llama 3.1 Nemotron 4 GPT-4 GPT-4 Claude 3.5
Benchmark 405B 340B Instruct (0125) Omni Sonnet
N i B 88.6 787 85.4 88.7 88.3
MMLU PRO (5-shot, CoT) 73.3 62.7 64.8 74.0 77.0
IFEval 88.6 85.1 84.3 85.6 88.0
HumanEval (0-shot) 89.0 73.2 86.6 90.2 92.0
!VIBPPEvalPIus 88.6 72.8 83.6 878 90.5
GSMBK (s shor, cor) 96.8 923 94.2 961 o
MATH (0-shot, CoT) 73.8 411 64.5 76.6 71
ARC Cf;allenge f6ciiat) 96.9 94.6 96.4 96.7 96.7
GPQA (0-shot, CoT) 51.1 - 41.4 53.6 59.4
S 885 86.5 88.3 80.5 90.2
Nexus 58.7 - 50.3 56.1 457
ZeroSCROLLS/QUALITY 95.2 = 95.2 90.5 90.5
InfiniteBench/En.MC 83.4 = 721 825 =
NIH/Multi-needle 981 - 100.0 100.0 90.8
Multiingual MGSM 91.6 - 85.9 90.5 91.6

Llama 3 405B#Ebenchmark 5 GPT-4#81k/:81d
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Eater Llama 3.1 Gemma 2 Mistral Llama 3.1 Mixtral GPT 3.5
Benchmark 8B 9B IT 7B Instruct 70B 8x22B Instruct Turbo
e 73.0 723 60.5 86.0 79.9 69.8
MMLU PRO (<ot coT 48.3 , 36.9 66.4 56.3 49.2
IFEval 80.4 73.6 57.6 87.5 7237 69.9
H:umanEvaI 72.6 54.3 40.2 80.5 75.6 68.0
AR ) i 72.8 717 495 86.0 78.6 82.0
pos 84.5 767 53.2 95.1 88.2 81.6
MATH (0-shot, coT) 51.9 443 13.0 68.0 541 431
ARC Challenge (0-shot 83.4 87.6 74.2 94.8 88.7 83.7
GPQA (0-shot, CoT) 32.8 - 28.8 46.7 333 30.8
it 76.1 = 60.4 84.8 < 85.9
Nexus 38.5 30.0 247 56.7 48.5 37.2
ZeroSCROLLS/QUALITY 81.0 - ) 90.5 ) B
InfiniteBench/En.MC 65.1 - - 78.2 - -
NIH/Multi-needle 98.8 - 97.5

Multilingual MGSM 68.9 53.2 29.9 86.9 711 51.4
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