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Andrej Karpathy

李彦宏

the hottest new programming language is English

未来的编程语言只会剩下两种：一种叫英文，一种叫中文
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What is the “Prompt”?
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Prompts



Secret in Modern NLP Development
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The history of modern natural language processing is essentially (probably) a 
history of changes in the relationship between downstream tasks and pre-
trained language models (PLMs). 

Pre-trained 
Language Models

Downstream
Task Models

Closer

（1）use pre-trained language models
（2）use a better pre-trained language model
（3）better use a pre-trained language  model
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What is the “prompt” in the 
context of NLP research?



直观的定义
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o Prompt is a cue given to the pre-trained language model to allow it better 
understand human’s questions



直观的定义
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o Prompt is a cue given to the pre-trained language model to allow it better 
understand human’s questions



更技术层面的定义
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o Prompt is the technique of making better use of the knowledge from the pre-
trained model by adding additional texts to the input. purpose

Method



更技术层面的定义
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o Prompt is the technique of making better use of the knowledge from the pre-
trained model by adding additional texts to the input. purpose

Method
还有什么好处？



任务的“大一统”
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Objective 
modificatio

n

Task 
Reformulation
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What is the general workflow of 
prompt-based methods?



Prompting for Sentiment Classification
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o Task Description: 
n Input: sentence x;
n Output: emotional polarity of it 
l (i.e., v.s )

Input:   x = I love this movie.



Prompting for Sentiment Classification

20

o Transform x into prompt x’ through 
following two steps:
n Defining a template with two slots: [x] and 

[z]; Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.



Prompting for Sentiment Classification

21

o Transform x into prompt x’ through 
following two steps:
n Defining a template with two slots: [x] and 

[z]; Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.

Require 
human effort



Prompting for Sentiment Classification
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o Transform x into prompt x’ through 
following two steps:
n Defining a template with two slots: [x] and 

[z];
n Instantiate slot [x] with input text

Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.



Prompting for Sentiment Classification
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o Build a mapping function between 
answers and class labels.
n    ->  fantastic
n    ->  boring

label answer

Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer: 
{fantastic:, 

boring:}



Prompting for Sentiment Classification
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o Given a prompt，predict the answer [z].
n C h o o s e  a  s u i t a b l e  p r e t r a i n e d 

language model;

Which one?

Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer: 
{fantastic:, 

boring:}



Prompting for Sentiment Classification
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o Given a prompt，predict the answer [z].
n C h o o s e  a  s u i t a b l e  p r e t r a i n e d 

language model;
n Fill in [z] as “fantastic” Template:  [x] 

Overall, it was a [z] 
movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer: 
{fantastic:, 

boring:}

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.



Prompting for Sentiment Classification
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o Mapping: Given an answer, map it into 
a class label.
n fantastic => 

Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Answer: 
{fantastic:, 

boring:}

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.

Mapping: fantastic =>



Summary
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Terminology Notation Example

Input x I love this movie

Output (label) y  

Template - [x] Overall, it was a [z] movie

Prompt x’ I love this movie. Overall, it was 
a [z] movie

Answer z fantastic, boring



Rethinking Human Efforts in Prompt-based Methods
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Answer: 
{fantastic:, 

boring:}

Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.

Mapping: fantastic =>



Rethinking Human Efforts in Prompt-based Methods
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Answer: 
{fantastic:, 

boring:}

Template:  [x] 
Overall, it was a [z] 

movie.

Input:   x = I love this movie.

Prompting:  x’ = I love this movie. 
Overall, it was a [z] movie.

Predicting: x’ = I love this movie. 
Overall, it was a fantastic movie.

Mapping: fantastic =>

Input:   x = I love this movie.

Predicting: 
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What are the design considerations 
for prompt-based methods?



Design Considerations for Prompt-based Methods
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o Prompt Template Engineering
o Answer Engineering
o Pre-trained Model Choice
o Expanding the Paradigm
o Prompt-based Training Strategies



Prompt Template Engineering
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o Research Question:
n how to define appropriate prompt templates

It was a [z] movie

The movie is [z]

The film is [z]



Design Decision of Prompt Templates
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Manual

Discrete
Search

Shape

Human?

Cloze

Prefix

Continuous

Mining

Paraphrasing

Gradient Search

Generation

LM Scoring

Prefix Tuning

Hybrid Tuning

[17], [26]

[7], [53]
[11]

[59]

[29]

[11]

[5]

[6]

[33]

Prompts are learnable 
parameters

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.11926.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://arxiv.org/pdf/2106.13884.pdf
https://arxiv.org/pdf/2101.00190.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/D19-1221.pdf
https://aclanthology.org/D19-1109.pdf
https://arxiv.org/pdf/2102.12206.pdf
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Human?
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Prefix

Continuous

Mining

Paraphrasing

Gradient Search
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LM Scoring

Prefix Tuning

Hybrid Tuning

[17], [26]

[7], [53]
[11]

[59]

[29]

[11]

[5]

[6]

[33]

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.11926.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://arxiv.org/pdf/2106.13884.pdf
https://arxiv.org/pdf/2101.00190.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/D19-1221.pdf
https://aclanthology.org/D19-1109.pdf
https://arxiv.org/pdf/2102.12206.pdf


Prompt Shape
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o Cloze Template
n Contain blanks to be filled.

n Useful for Masked LMs.

l “The capital of ____ is Beijing .” 



Prompt Shape

36

o Cloze Template
o Prefix Template
n Contain a string prefix to be continued.

n Useful for Left-to-right LM and Encoder-Decoder LM.

o “President Joe Biden and three of his European allies face …… TL;DR: ____”



Prompt Shape
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Manual

Discrete
Search

Shape

Human?

Cloze
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Continuous

Mining

Paraphrasing

Gradient Search
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Prefix Tuning

Hybrid Tuning

[17], [26]

[7], [53]
[11]

[59]

[29]

[11]

[5]

[6]

[33]

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.11926.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://arxiv.org/pdf/2106.13884.pdf
https://arxiv.org/pdf/2101.00190.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/D19-1221.pdf
https://aclanthology.org/D19-1109.pdf
https://arxiv.org/pdf/2102.12206.pdf


Manual Template Design
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o Manual Prompt
n The most natural way to create prompts

o I love this movie so much! What’s the sentiment of the text? ___ .

o President Joe Biden and three of his European allies face ……  In summary, ___ .

o President Joe Biden and three of his European allies face …… The article is about ___ .



Manual Template Design
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o Manual Prompt
n The most natural way to create prompts
n An art that takes time and experience.

§ First template–answer pair

§ Second template–answer pair

Template: <A movie review> The movie is ___ . 
Answer: fantastic/terrible

Template: <A movie review> The review is ___ . 
Answer: positive/negative

Zero-shot Accuracy 
(BERT-base, SST-2)

0.749

0.534



Manual Template Design
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o Manual Prompt
n The most natural way to create prompts

n An art that takes time and experience.

n For some complicated tasks, its hard to manually craft templates. 
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https://arxiv.org/pdf/2102.12206.pdf


Discrete Search
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o Mining
o Paraphrasing
o Gradient-based Search
o Generation
o LM Scoring



Discrete Search
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o Mining
n Use a large corpus to mine templates that 

contain both the input and the gold answer.
n Example
o Fact  re t r ieva l  fo r  coun t ry -cap i ta l 

relationship
o search through Wikipedia and f ind 

strings that contain both ``Beijing” and 
``China” or other pairs.

Input Gold answer
China Beijing

Japan Tokyo

United States Washington

o  Beijing, the capital of China
o  The capital of China is Beijing
o  ……

Reference: Jiang et al. How Can We Know What Language Models Know? TACL(2020)



Discrete Search
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o Paraphrasing
n Take in an existing seed template, and paraphrases it into a set of other candidate templates.

References: [1] Jiang et al. How Can We Know What Language Models Know? TACL (2020). [2] Yuan et al. BARTScore: Evaluating Generated Text as 
Text Generation. NeurIPS (2021). [3] Haviv et al. BERTese: Learning to Speak to BERT. EACL (2021).



Discrete Search
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o Paraphrasing
n Take in an existing seed template, and paraphrases it into a set of other candidate templates.
n Typical methods
o Back-translation
o Using replacement of phrases from a thesaurus
o Use neural rewriter to rewrite 

References: [1] Jiang et al. How Can We Know What Language Models Know? TACL (2020). [2] Yuan et al. BARTScore: Evaluating Generated Text as 
Text Generation. NeurIPS (2021). [3] Haviv et al. BERTese: Learning to Speak to BERT. EACL (2021).



Discrete Search
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o Gradient-based Search
n Stepping through tokens and find ones that can trigger desired outputs.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

___ .I love this movie!

The template token we want to search

We want the LM to predict positive here



Discrete Search
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o Gradient-based Search
n Stepping through tokens and find ones that can trigger desired outputs.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

___ .I love this movie! We want the LM to predict positive here

Token P(positive)

is 0.8

hello 0.09

cat 0.04

…. …



Discrete Search
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o Gradient-based Search
n Stepping through tokens and find ones that can trigger desired outputs.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

___ .I love this movie! We want the LM to predict positive here

Token P(positive)

is 0.8

hello 0.09

cat 0.04

…. …



Discrete Search
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o Generation
n Use LM to generate templates.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

Input:   Thank you <X> me to the party <Y> week. 

Target: <X> for inviting <Y> last <Z> 
Pre-train



Discrete Search
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o Generation
n Use LM to generate templates.

Reference: Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (2020).

I love this movie! <X> great <Y>

<X> This is <Y> . <Z>
<X> A <Y> one. <Z>
……

T5 decode



Discrete Search
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o LM Scoring
n Use the LM to choose the templates that achieve high LM probability.

I love this movie! <template> positive. 

Sequence P

I love this movie! The sentiment of the text is positive. 0.4

I love this movie! Hello world positive 0.09

I love this movie! The text is positive 0.3

…. …

Reference: Davison et al. Commonsense Knowledge Mining from Pretrained Models. EMNLP (2019). 
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Manual

Discrete
Search

Shape

Human?

Cloze

Prefix

Continuous

Mining

Paraphrasing

Gradient Search

Generation

LM Scoring

Prefix Tuning

Hybrid Tuning

[17], [26]

[7], [53]
[11]

[59]

[29]

[11]

[5]

[6]

[33]

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.11926.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://arxiv.org/pdf/2106.13884.pdf
https://arxiv.org/pdf/2101.00190.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/D19-1221.pdf
https://aclanthology.org/D19-1109.pdf
https://arxiv.org/pdf/2102.12206.pdf


Continuous Template Search
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o Prefix Tuning
n Prepends a sequence of continuous task-

specific vectors to the input, while keeping the 
LM parameters frozen.

References: [1] Li et al. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 (2021). [2] Lester et al. The Power of Scale 
for Parameter-Efficient Prompt Tuning. arXiv:2104.08691 (2021)



Continuous Template Search
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o Prefix Tuning
n Prepends a sequence of continuous task-

specific vectors to the input, while keeping the 
LM parameters frozen.
l Shallow Prefix Tuning

References: [1] Li et al. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 (2021). [2] Lester et al. The Power of Scale 
for Parameter-Efficient Prompt Tuning. arXiv:2104.08691 (2021)

Transformer Layers

This     is   input  text.<Prefix>



Continuous Template Search
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o Prefix Tuning
n Prepends a sequence of continuous task-

specific vectors to the input, while keeping the 
LM parameters frozen.
l Shallow Prefix Tuning
l Deep Prefix Tuning

References: [1] Li et al. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 (2021). [2] Lester et al. The Power of Scale 
for Parameter-Efficient Prompt Tuning. arXiv:2104.08691 (2021)

Transformer Layers

This     is   input  text.<Prefix>



Continuous Template Search
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o Hybrid Tuning
n An extension of prefix tuning

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 



Continuous Template Search
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o Hybrid Tuning
n An extension of prefix tuning
n The positions of tunable virtual tokens can be 

anywhere.

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 

I love this movie so much! positive.



Continuous Template Search
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o Hybrid Tuning
n An extension of prefix tuning
n The positions of tunable virtual tokens can be 

anywhere.
n Use hard templates initialization

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 

I love this movie so much! positive.The issentiment



Continuous Template Search
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o Hybrid Tuning
n An extension of prefix tuning
n The positions of tunable virtual tokens can be 

anywhere.
n Use hard templates initialization
n Combine hard and soft template tokens

References: [1] Zhong et al. Factual Probing Is [MASK]: Learning vs. Learning to Recall. CoRR abs/2104.05240 (2021). [2] Liu et al. GPT Understands, 
Too. CoRR abs/2103.10385 (2021). 

I love this movie so much! is positive.
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o Prompt Template Engineering
o Answer Engineering
o Pre-trained Model Choice
o Expanding the Paradigm
o Prompt-based Training Strategies



Answer Engineering
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o Research Question:
n Given a task (or a prompt), how to define a suitable mapping function between label space and 

answer space?

{fantastic:, boring:}

{interesting:, terrible:}

{good:, bad:}



Answer Engineering
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o Research Question:
n Given a task (or a prompt), how to define a suitable mapping function between label space and 

answer space?

Positive

Negative

Label Space (Y)

Interesting
Fantastic

Happy

Boring
1-star

…

Answer Space (Z)
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https://aclanthology.org/2021.naacl-main.185.pdf
https://aclanthology.org/2020.emnlp-main.479.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2101.00190.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/2021.eacl-main.20.pdf
https://arxiv.org/pdf/2104.07650.pdf


Design Decision of Prompt Answer Engineering

64

Manual
Discrete

Search

Shape

Human?

Token

Span

Continuous

Paraphrasing

Prune-Search

Mining

Label-Decomp

Sent

Finite?
bounded

unbounded

[19], [22]

[17], [29]

[7], [53]

[2], [53]

[28]

[11]

[13]

[44]
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https://arxiv.org/pdf/2104.07650.pdf
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o Token
n Useful for most classification tasks
n Examples

o <A movie review> The movie is fantastic/terrible.

o <Premise> Yes/No. <Hypothesis>



Design Considerations for Prompt-based Methods
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o Token
o Span
n Useful for classification with long label names, QA, knowledge probing, etc.
n Example



Design Considerations for Prompt-based Methods
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o Token
o Span
o Sentence(s)
n Useful for generation tasks, like MT or summarization.
n Example

o Translation from English to Chinese
Input: Hello, world!
Target (gold answer): 你好，世界！
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Answer Space
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o Bounded
n The space of possible outputs is constrained/finite.
n Example
l Text classification: health; finance; politics, sports. 



Answer Space
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o Bounded
n The space of possible outputs is constrained/finite.
n Example
o Text classification: health; finance; politics, sports.

o Unbounded
n The space of possible outputs is unconstrained/infinite.
n Example
o Text summarization: all valid sequence of tokens.
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Human Design

72

o The most natural way to create answers
n For generation tasks, we can use identity mapping to map target output directly to gold 

answer
o In MT/Summarization, take the target directly as gold answer



Human Design
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o The most natural way to create answers
n For generation tasks, we can use identity mapping to map target output directly to gold 

answer
o In MT/Summarization, take the target directly as gold answer

n For classification tasks, the label name can also act as gold answer.
o For example, sports, politics



Human Design
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o The most natural way to create answers
n For generation tasks, we can use identity mapping to map target output directly to gold 

answer
o In MT/Summarization, take the target directly as gold answer

n For classification tasks, the label name can also act as gold answer.
o For example, sports, politics

o An art that takes time and experience.
n For some complicated tasks, it’s hard to manually craft answers. 
o For example, relation classification
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Manual
Discrete

Search

Shape

Human?

Token

Span

Continuous

Paraphrasing

Prune-Search

Mining

Label-Decomp

Sent

Finite?
bounded

unbounded

[19], [22]

[17], [29]

[7], [53]

[2], [53]

[11]

[13]

[44]

https://aclanthology.org/2021.naacl-main.185.pdf
https://aclanthology.org/2020.emnlp-main.479.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2101.00190.pdf
https://aclanthology.org/D19-1250.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2106.01760.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/2021.eacl-main.20.pdf
https://arxiv.org/pdf/2104.07650.pdf
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o Paraphrasing
o Prune then Search
o Label Decomposition
o Mining



Discrete Answer Search
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o Paraphrasing
n Start with an initial answer space, and then use paraphrasing to expand this 

answer space to broaden its coverage.
n Example 

o Multiple Choice QA
A person wants to submerge himself in water, what should he use?
(A) Whirl pool (Paraphrase to get Bathtub, A bathtub etc.)
(B) … 

Reference: Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. 2020. How Can We Know When Language Models Know? CoRR 
abs/2012.00955 (2020). 
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o Prune then Search
n Pruning methods: 
o Select the most frequent words
o Select tokens that have highest generation probability at answer position

References:
[1] Taylor Shin, Yasaman Razeghi, Robert L. LoganIV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models 
with Automatically Generated Prompts. In Empirical Methods in Natural Language Processing (EMNLP).
[2] Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making Pre-trained Language Models Better Few-shot Learners. In Association for Computational 
Linguistics (ACL). 
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o Prune then Search
n Pruning methods: 
o Select the most frequent words
o Select tokens that have highest generation probability at answer position

n Searching methods:
o Choose answers that maximize the likelihood of training data
o Choose answers that achieve the best zero-shot accuracy

References:
[1] Taylor Shin, Yasaman Razeghi, Robert L. LoganIV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models 
with Automatically Generated Prompts. In Empirical Methods in Natural Language Processing (EMNLP).
[2] Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making Pre-trained Language Models Better Few-shot Learners. In Association for Computational 
Linguistics (ACL). 
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o Label Decomposition
n For complex label, decompose the label into its constituent words.
n Example

Reference: Xiang Chen, Xin Xie, Ningyu Zhang, Jiahuan Yan, Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si, and Huajun Chen. 2021. AdaPrompt: 
Adaptive Prompt-based Finetuning for Relation Extraction. CoRR abs/2104.07650 (2021) .



Discrete Answer Search
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o Mining
n Given a seed answer, use some knowledge base to retrieve related words.
n Example: “city”

Reference: Ning Ding, Yulin Chen, Xu Han, Guangwei Xu, Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu, Juanzi Li and Hong-Gee Kim. 2021. Prompt-
Learning for Fine-Grained Entity Typing. CoRR abs/2108.10604 (2021) .
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o Prompt Template Engineering
o Answer Engineering
o Pre-trained Model Choice
o Expanding the Paradigm
o Prompt-based Training Strategies



Pre-trained Model Choice
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o Research Question:
n Given a task (or a prompt), which pre-trained language model would be the most 

appropriate one?

The story 
describes …., 
in summary [z]
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PLMs

Objective Func

Data Corrpution

Directionality

Standard Language Model

Corrupted Text Reconstruction

Full Text Reconstruction

Mask, Deletion, Replacement 

Left-to-right

Bidirectional

GPT3

BERT

BART

BERT

GPT

T5

https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://jmlr.org/papers/v21/20-074.html
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PLMs

Left-to-Right LM

Masked LM

Encoder-decoder

GPT, GPT3

BERT, RoBERT

BART, T5

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://aclanthology.org/2020.acl-main.703/
https://jmlr.org/papers/v21/20-074.html


Left-to-right Language Model
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o Characteristics
n First proposed by Markov (1913)
n Count-based-> Neural network-based
n Specifically suitable to highly larger-scale LMs

o Example
n GPT-1,GPT-2,GPT-3 

o Roles in Prompting Methods
n The earliest architecture chosen for prompting
n Usually equipped with prefix prompt and the parameters 

of PLMs are fixed



Masked Language Model
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o Characteristics
n An extension of left-to-right architecture
n Unidirection -> bidirection prediction
n Suitable for NLU tasks

o Example
n BERT, ERNIE

o Roles in Prompting Methods
n Usually combined with cloze prompt
n Suitable for NLU tasks



Masked Language Model
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o Characteristics
n A denoised auto-encoder
n Use two Trans formers  and two d i f fe rent  mask 

mechanisms to handle text X and Y separately
o Examples
n BART, T5

o Roles in Prompting methods 
n Text generation tasks or some tasks that can be 

formulated into a text generation problem



Which one is more popular?

89
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o Prompt Template Engineering
o Answer Engineering
o Pre-trained Model Choice
o Expanding the Paradigm
o Prompt-based Training Strategies



Expanding the Paradigm

91

o Research Questions
n How to extend the current prompting framework to support more NLP tasks?



Design Decision of Multiple Prompt Learning
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Multi-Prompt

Prompt Ensemble

In-context Learning

Chain-of-thought

[11], [57]

[47], [48]

[52]

https://aclanthology.org/2020.tacl-1.28.pdf
https://arxiv.org/pdf/2106.11520.pdf
https://arxiv.org/pdf/2104.08773.pdf
https://arxiv.org/pdf/2104.08786.pdf
https://arxiv.org/pdf/2105.11259.pdf


Prompt Ensembling
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o Definition
n using multiple unanswered prompts for an input at 

inference time to make predictions
o Advantages
n Utilize complementary advantages
n Alleviate the cost of prompt engineering
n Stabilize performance on downstream tasks



In-context Learning
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o Definition
n Help the model answer the prompt with additional 

answered prompts  
o Advantage
n make use of the small amount of information that has 

been annotated
o Core step
n Selection of answered prompts
n Ordering of answered prompts



Chain-of-thought
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Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei et al.2022



Training Strategies
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o Prompt Template Engineering
o Answer Engineering
o Pre-trained Model Choice
o Expanding the Paradigm
o Prompt-based Training Strategies



Training Strategies
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o Data Perspective
n Zero-shot: without any explicit training of the LM for the down-stream task
n Few-shot: few training (e.g., 100) samples of downstream tasks
n Full-data: lots of training samples (e.g., 10K) of downstream tasks



Parameter Perspective
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

No prompts
No parameters 
(discrete 
prompts)
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Example: BERT + Continuous Prompt for text classification



Cases of Parameter Updating
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Example: BERT + Adapter for text classification



Cases of Parameter Updating
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Example: GPT3 + Discrete Prompts for Machine Translation



Cases of Parameter Updating
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Example: GPT3 + Continuous Prompts for Machine Translation



Cases of Parameter Updating
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no 

PromptsPre-trained LMs

frozentuned without frozen Tuned

Example: BART + Continuous Prompts for Machine Translation



Too many, difficult to select?
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If you have a highly large left-to-
right pre-trained language model 
(e.g., GPT3)

If you have few training samples?

If you have lots of training samples?



Which one is more popular?
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GPT-2
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Revisit “Prompt Engineering” in 
the era of ChatGPT



Changes brought by ChatGPT
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o Left-to-right models dominate the world
o Solving traditional NLP tasks are not the most 

important things
o API-based research become more popular
o Supervised fine-tuning become popular

Cloze prompts fade into 
history

Prompt distribution matters a 
lot

Zero-shot & few-shot prompting

Prompt scaling law



Changes brought by ChatGPT
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o Left-to-right models dominate the world
o Solving traditional NLP tasks are not the most 

important things
o API-based research become more popular
o Supervised fine-tuning become popular
o Evaluation is difficult

Cloze prompts fade into 
history

Prompt distribution matters a 
lot

Zero-shot & few-shot prompting

Prompt scaling law

Prompt-based evaluation
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Prompt Engineering 2.0:
Design Considerations



Prompt Engineering in LLMOps
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Pre-train

Supervised 
Fine-tune

InferenceEvaluation

Deployment



Prompt Engineering: Supervised Fine-tuning
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o Prompt Diversity
n How does prompt diversity affect model’s 

performance?
o Prompt number
n How does the number of prompts affect 

model’s performance?
o Response Quality
n How does the quality of response affect 

model’s performance?



Prompt Engineering: Supervised Fine-tuning

119
A Survey of Recently Released “Instructions” (Zhang et al)



Prompt Engineering: Supervised Fine-tuning
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Which “instruction” data is the best? (Wang et al)



Prompt Engineering: Supervised Fine-tuning
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LIMA: Less Is More for Alignment (Zhou et al)



Prompt Engineering: Inference
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o Zero-shot Prompting:
n How to ask a good question that ChatGPT can better 

understand you?



Prompt Engineering: Inference
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Prompt Engineering: Changes brought by ChatGPT
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o Zero-shot Prompting
o Few-shot Prompting
n How do I get the model to mimic a given example?
l Format following
l Reasoning step decomposition



“X”- of thought
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Chain-of-thought Program-of-thought Tree-of-thought



Prompt Engineering: Evaluation
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o How to evaluate a model as you desire?



Prompt Engineering: Evaluation
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o How to evaluate a model as you desire?
BERTScore



Prompt Engineering: Evaluation
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o Evaluation
n How to evaluate a model as you desire? GPTScore



Prompt Engineering: Evaluation
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o Evaluation
n How to evaluate a model as you desire? ChatGPT Score



Prompt Engineering: Evaluation
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o How to evaluate a model as you desire?



Prompt Engineering: Deployment
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o How to design a good preface?
n GPT Agent
n System Message

o How to prevent jailbreak prompt?



Prompt Engineering: Pre-train
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o How to prompt pre-training data so that 
n the next word could be better predicted
n the stored information can be better elicited
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谢谢各位！
动态化、不规则化是人工智能应用发展的重要趋势


